Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.17.541098

ABSTRACT

Background: The coronavirus disease 19 (COVID-19) has represented an issue for global health since its outbreak in March 2020. It is now evident that the SARS-CoV-2 infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Methods: Several SARS-CoV-2 strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated using immunoblot and immunofluorescence on cellular extracts, subcellular fractions, and brain tissue. The viral proteins Spike, Nucleocapsid, and Membrane were overexpressed in SH-SY5Y cells and the direct effect on Tau phosphorylation was checked using immunoblot experiments. Results: Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Conclusions: Our data support the evidence that SARS-CoV-2 infection in the Central Nervous System triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.


Subject(s)
Coronavirus Infections , Tauopathies , Alzheimer Disease , Nervous System Diseases , COVID-19 , Neuroblastoma
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.05.531513

ABSTRACT

Purinergic receptors and NOD-like receptor protein 3 (NLRP3) inflammasome regulate inflammation and viral infection, but their effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain poorly understood. Here, we report that the purinergic receptor P2X7 and NLRP3 inflammasome are cellular host factors required for SARS-CoV-2 infection. Lung autopsies from patients with severe coronavirus disease 2019 (COVID-19) reveal that NLRP3 expression is increased in host cellular targets of SARS-CoV-2 including alveolar macrophages, type II pneumocytes and syncytia arising from the fusion of infected macrophages, thus suggesting a potential role of NLRP3 and associated signaling pathways to both inflammation and viral replication. In vitro studies demonstrate that NLRP3-dependent inflammasome activation is detected upon macrophage abortive infection. More importantly, a weak activation of NLRP3 inflammasome is also detected during the early steps of SARS-CoV-2 infection of epithelial cells and promotes the viral replication in these cells. Interestingly, the purinergic receptor P2X7, which is known to control NLRP3 inflammasome activation, also favors the replication of D614G and alpha SARS-CoV-2 variants. Altogether, our results reveal an unexpected relationship between the purinergic receptor P2X7, the NLRP3 inflammasome and the permissiveness to SARS-CoV-2 infection that offers novel opportunities for COVID-19 treatment.


Subject(s)
Coronavirus Infections , Macrophage Activation Syndrome , Virus Diseases , COVID-19 , Inflammation
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.08.479661

ABSTRACT

Several compounds have been tested against SARS-CoV-2; at present, COVID-19 treatments decrease the deleterious inflammatory response and acute lung injury. However, the best therapeutic response would be expected by combining anti-inflammatory properties, while concomitantly blocking viral replication. These combined effects should drastically reduce both infection rate and severe complications induced by novel SARS-CoV-2 variants. Therefore, we explored the antiviral potency of a class of anti-inflammatory compounds that inhibit the N-Acylethanolamine acid amidase (NAAA). This enzyme catalyzes the hydrolysis of palmitoylethanolamide (PEA), a bioactive lipid that mediates anti-inflammatory and analgesic activity through the activation of peroxisome proliferator receptor- (PPAR-). Similarly, this pathway is likely to be a significant target to impede viral replication since PPAR- activation leads to dismantling of lipid droplets, where viral replication of Flaviviruses and Coronaviruses occurs. Here, we show that either genetic or pharmacological inhibition of the NAAA enzyme leads to five-fold reduction in the replication of both SARS-CoV-2 and ZIKV in various cell lines. Once NAAA enzyme is blocked, both ZIKV and SARS CoV-2 replication decrease, which parallels a sudden five-fold decrease in virion release. These effects induced by NAAA inhibition occurs concomitantly with stimulation of autophagy during infection. Remarkably, parallel antiviral and anti-inflammatory effects of NAAA antagonism were confirmed in ex-vivo experiments, within SARS-CoV-2 infected human PBMC cells, in which both viral genomes and TNF- production drop by ~60%. It is known that macrophages contribute to viral spread, excessive inflammation and macrophage activation syndrome that NAAA inhibitors might prevent, reducing the macrophage-induced acute respiratory distress syndrome and subsequent death of COVID-19 patients.


Subject(s)
Macrophage Activation Syndrome , Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome , Acute Lung Injury , COVID-19 , Inflammation
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.31.437907

ABSTRACT

We developed a multi-scale microscopy imaging toolbox to address some major issues related to SARS-CoV-2 interactions with host cells. Our approach harnesses both conventional and super-resolution fluorescence microscopy (Airyscan, STORM, and STED) and easily matches the spatial scale of single virus-cell checkpoints. We deployed this toolbox to characterize subtle issues related to the entry phase of SARS-CoV-2 variants in VeroE6 cells. Our results suggest that the variant of concern B.1.1.7, currently on the rise in several countries by a clear transmission advantage, in these cells outcompetes its ancestor B.1 in terms of a much faster kinetics of entry. Given the molecular scenario (entry by the late pathway and similar fraction of pre-cleaved S protein for B.1.1.7 and B.1), the faster entry of B.1.1.7 could be directly related to the N501Y mutation in the S protein, which is known to strengthen the binding of Spike RBD with ACE2. Remarkably, we also observed directly the significant role of clathrin as mediator of late entry endocytosis, which had been previously suggested in analogy with other CoVs and from experiments on pseudotyped virus models. On overall, we believe that our fluroescence microscopy-based approach is valuable for future studies addressing of how SARS-CoV-2 and its variants interact with cells.

SELECTION OF CITATIONS
SEARCH DETAIL